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ABSTRACT 
This paper outlines a radial basis function neural network approach 
to predict the failures in overhead distribution lines of power 
delivery systems. The RBF networks are trained using historical 
data. The network sizes and errors are simultaneously minimized 
using the Pareto Archive Evolutionary Strategy algorithm. Mutation 
of the network is carried out by invoking an orthogonal least square 
procedure. The performance of the proposed method was compared 
to a fuzzy inference approach and with multilayered perceptrons. 
The results suggest that this approach outperforms the other 
techniques for the prediction of failure rates. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – connectionism and neural 
nets, parameter learning. 

General Terms: Algorithms 

Keywords: Pareto Archive Evolutionary Strategy, multi-
objective optimization, radial basis function, neural networks, power 
system reliability. 

1. INTRODUCTION 
Reliable power distribution systems are essential to deliver electric 
power from electrical substations to customers. A failure in any 
component of a distribution system will generally cause a power 
interruption. Since a very large part of the distribution systems in the 
world consist of overhead feeders with radial configuration, failures 
on distribution systems are responsible for a large part of the 
interruptions experienced by customers.  

It is therefore essential to incorporate an effective maintenance 
schedule for these overhead feeders, which includes the ability to 
predict failure rates based on historical data.  Wind, lightning, ice, 
tornadoes and other weather are some of the factors that could cause 

line failures. High tree density near a line or lack of regular tree 
trimming can also cause frequent interruptions.  

In a previous work, an adaptive fuzzy inference system approach 
was used for failure rate prediction of overhead lines [1, 2, 3]. The 
present work proposes the use of radial basis function (RBF) neural 
networks for failure rate prediction. RBF networks were selected for 
the model, as the data set that we have considered was of low 
dimensionality. RBF neural networks are particularly well suited for 
function interpolation in these cases, and have consistently 
outperformed other approaches in a variety of tasks [4, 5]. Further 
motivation was drawn from the fact that RBF networks are 
functionally equivalent to fuzzy logic systems which were already 
shown to predict failure rates with a small error rate [6]. As these 
networks make use of units having highly localized responses, 
called kernels, many methods exist to train such networks that use 
clustering [4]. Evolutionary algorithms [7] have also been a popular 
choice amongst researchers [8, 9, 10, 11, 12, 13].  

For failure rate prediction, it is especially important to accurately 
predict failure rates of transmission lines that are more prone to 
failures. Unlike local algorithms, evolutionary approaches can easily 
place kernels outside the convex hull of the input data set, thereby 
reducing edge effects making room for more accurate predictions in 
these boundary cases. Typically, RBF networks use a large number 
of kernels in their hidden layer. However, to avoid over-fitting of the 
training data, a parsimonious network is always desirable. In this 
paper, a multi-objective optimization approach has been adopted 
with the number of kernels being a second objective (in addition to 
the error). Multi-objective optimization [14, 15, 16, 17, 18] is 
particularly well suited in our case as historical data of failure rates 
is extremely difficult to obtain. Moreover, preprocessing the data is 
a cumbersome task [2]. A multi-objective approach yields a number 
of RBF networks of varying sizes, and after the training has been 
accomplished using training data, the best network can be selected 
using a separate test data set. 

1.1 Pareto Archive Evolutionary Strategy 
Evolutionary algorithms have emerged as one of the most popular 
approaches for complex optimization problems [7]. They draw upon 
Darwinian paradigms of evolution to search through the solution 
space (the set of all possible solutions). Starting with a set (or 
population) of solutions, in each generation of the algorithm, new 
solutions are created from older ones by means of a few 
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evolutionary operators, the commonest of them being mutation. 
Mutation is accomplished by imparting a small, usually random 
perturbation to the solution. In a manner similar to the Darwinian 
paradigm of survival of the fittest, only the better solutions are 
allowed to remain in a population, the degree of optimality of the 
solution being assessed through a measure called fitness.  

When dealing with optimization problems with multiple objectives, 
the conventional concept of optimality does not hold good [14, 15, 
16]. Hence, the concepts of dominance and Pareto-optimality are 
applied. Without a loss of generality, if we assume that the 
optimization problem involves minimizing each objective 

(.),ie Mi ...1= , a solution u is said to dominate over another 

solution v iff },,,2,1{ Mi K∈∀ )()( veue ii ≤  with at least one 
of the inequalities being strict, i.e. for each objective, u  is better 
than or equal to v  and better in at least one objective. This 
relationship is represented as vu p . In a population of solution 
vectors, the set of all non-dominating solutions is called the Pareto 
front. In other words, if S is the population, the Pareto Front is the 
set , 

{ })(,| uvSvSu p¬∈∀∈=Γ .                          (1) 

Given any set S of solutions, we will use the notation Su p to 
mean  vuSv p⇒∈ . 

The simplistic approach of aggregating multiple objectives into a 
single one often fails to produce good results as it produces only a 
single optimal solution. Multi-objective optimization on the other 
hand involves extracting the entire Pareto front from the solution 
space. In recent years, many evolutionary algorithms for multi-
objective optimization have been proposed [17, 19].  

The Pareto Archive Evolutionary Algorithm (PAES) is a multi-
objective evolutionary algorithm [20, 21, 22]. PAES maintains an 
archive of non-dominated solutions that is initialized at the 
beginning from one or more randomly generated solutions. In each 
iteration of PAES, a solution is selected from the archive. The 
solution is then mutated to produce an offspring solution.  If the 
parent dominates the offspring, the latter is automatically discarded. 
However, when the offspring dominates, it replaces its parent in the 
archive. If neither parent nor offspring dominate, the algorithm picks 
the one that lies in a less crowded region of the archive. 
Crowdedness in PAES is measured using an adaptive grid method, 
the details of which are outlined in [22]. Arguably, PAES is the 
simplest of all multi-objective evolutionary algorithms. Other 
versions of PAES, such as the (1+λ)-PAES and the (µ+λ)-PAES 
have also been proposed [22]. The present research incorporates a 
variation of the basis PAES algorithm, a detailed description of 
which is included in Section 2. 

 

1.2 Radial Basis Function Networks 
RBF networks considered in this paper are capable of performing 

mappings from an n-dimensional input nℜ  to a one-dimensional 
output. The network consists of a set of N nonlinear elements with 
local responses, called kernels. For an input x(q), q=1, 2, … Q, 
drawn from a set of Q samples, the response of the ith kernel is given 
by, 
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In the above equation iµ  and iσ  are parameters associated with 
each kernel, usually referred to as its location and width. The 
network output is a linear combination of the kernel responses, 

( )∑
=

=
K

i
ii qwqy

1

)()( xφ ,                                  (3) 

where each  wk  is a weight linking the kernel to an output summing 
unit. Arranging the kernel responses as a NQ ×  matrix, Φ , 

whose (q, i)th element is ( ))(qi xφ , and the weights and outputs as 
1×N and 1×Q vectors, w and y we get, 

Φwy = .                                        (4) 

Suppose t is a vector of desired outputs, called targets, the mean 
square error between the actual outputs and targets is, 

TE ))((2
1 ytyt −−=                                 (5) 

The optimal weight vector to minimize the mean square error is 
given by [4], 

( ) tΦtΦΦΦw +−
== TT 1

,                            (6) 

where +Φ  is the pseudoinverse of Φ . A number of RBF training 
methods apply orthogonal least square (OLS) techniques to the 
response matrix Φ . We postpone a fuller discussion on this 
approach until Section 2. 

Evolutionary algorithms have been very popular in determining the 
parameters of RBF networks. A genetic algorithm was used in [9] to 
evolve the network for function approximation. The genetic 
algorithm population consisted of individual kernels instead of 
entire networks. The kernel locations and widths were evolved, 
while the weights were determined separately. The network size was 
a constant. A similar strategy has been used in [8] which makes use 
of an OLS procedure and singular value decomposition to evaluate 
the contribution of individual kernels. Other methods [e.g. 10] 
evolve an entire population of RBF neural networks. A two-level 
algorithm was proposed in [12] where a micro genetic algorithm at 
the upper level is used to evolve the kernel widths, while a lower 
level OLS process determines the other parameters. In [11] the 
number of kernels is also determined dynamically using a genetic 
algorithm. In the first application of multi-objective optimization to 
RBF training [13], the network size is the second objective to be 
minimized. The proposed method makes use of an OLS algorithm 
and singular value decomposition on the kernel response matrix to 
perform mutation. 

PAES was selected as the training algorithm in this paper as it is 
arguably the simplest of all multi-objective optimization algorithms. 
In terms of algorithm complexity, it compares favorably with other 
popular approaches such as NSGA-II and SPEA [17, 19]. 
Furthermore, preliminary simulations by us suggested that applying 
crossover, one of the standard operators in evolutionary algorithms, 
failed to improve the convergence towards the Pareto front, while 
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adding to computer time. Unlike genetic algorithms, evolutionary 
strategies rely almost solely on mutation, the other primary 
evolutionary operator. Keeping in view the general philosophy of 
simplicity in PAES, we have devised a simple but effective mutation 
operator to evolve accurately trained RBF networks. 

2. PROBLEM DESCRIPTION 
Reliable power distribution systems are essential to deliver electric 
power from generating stations to customers. A failure in any 
component of a distribution system will cause a power interruption. 
Since a very large part of the distribution systems in the world 
consist of overhead feeders with radial configuration, failures on 
distribution systems are responsible for a large part of the 
interruptions experienced by customers. It is therefore essential to 
incorporate an effective maintenance schedule for these overhead 
feeders, which includes the ability to predict failure rates based on 
historical data.  Wind, lightning, ice, tornadoes and other weather 
are some of the factors that could cause line failures. High tree 
density near a line or lack of regular tree trimming can also cause 
frequent interruptions.  

Previous work on the prediction of the failure rates of overhead lines 
has used an adaptive fuzzy inference system approach [3]. The data 
to train the model was gathered from various sources, including a 
large utility company based in the western United States, and the 
National Climatic Data Center, for a seven year period, 1990-1996. 
A total of 37 feeder sections were involved. The input data into this 
system consisted of four fields, which were, (i) the lightning rate, i.e. 
the number of days experiencing lightning each year, (ii) the tree 
density, i.e. the number of trees per mile length of feeder-section, 
(iii) the years since tree trimming was carried out in that area, and 
(iv) the wind index, which incorporates information on the wind 
velocity as well their duration. The output data, used for training, 
was the failure rate, i.e. the average number of failures per mile of 
feeder, per year. 75% of the data was used to train the fuzzy model, 
while the rest was use to evaluate its performance. For further 
details, one is referred to [2]. Since it is known a priori that less tree 
trimming, or excess lightning activity would increase the likelihood 
of failures, such domain knowledge was effectively used to design a 
fuzzy rule base. The rule base was further fine-tuned using a 
gradient descent algorithm to minimize the mean square error 
between the model’s predicted failure rate, and the actual values 
obtained from the data. The research in this paper uses the same data 
for predicting failure rates. The results of that earlier research have 
also been used here for the sake of comparison. 

 

3. APPROACH 
3.1 Algorithm Description 
The proposed algorithm begins with by generating several RBF 
networks and picking out the non-dominated set as the initial 
archive. The network size, and the kernel location and width 
parameters of the initial RBF networks are generated randomly, but 
the weights are computed using Equation (6). The archive records 
the size, as well as the kernel locations, widths and weights up to a 
limit. Within each iteration of the algorithm, a solution u is picked at 
random from the archive A. The solution is mutated to produce an 
offspring v. The offspring is compared with the parent solution. If 

uv p , v is inserted into A. Any archived solution w, including u 

that is dominated by v is also removed. On the other hand, if v is 
dominated by u, v is discarded. When neither vu p  nor uv p , the 
algorithm checks to see if v dominates any other solution in the 
archive A. If so, then v is inserted into A while u as well as other 
solutions in A that are dominated by v are discarded.  If none of 
these cases apply, then the algorithm uses the approach adopted by 
most multi-objective evolutionary algorithms to prefer solutions that 
lie in sparser regions of the non-dominated front. In a manner 
similar to NSGA-II [19] picks the solution that lies in a more 
sparsely located region in the archive A. The crowdedness may be 
estimated by first sorting the solutions according to their errors, and 
then considering the perimeter of a rectangle that encloses the 
solution, and whose corners are the latter’s neighbors in the sorted 
list [19]. For any RBF solution v, is given by, 

)min()max(
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In the above equation, u and w are v’s neighbors in the sorted list, 
and 

u
E , 

v
E , and 

u
N , 

v
N are the associated errors as given in 

Equation (5) and the number of kernels. The min(.) and max(.) 
operators are carried out over the entire archive A. The pseudocode 
for the algorithm is provided below. 
populate A with initial RBFs; 
for each w in A that is dominated,  

A = A - {w}; 
end 
t=0; 
while t<maxIterations 

select u randomly from A; 
v = mutate(u); 

if up v 
do nothing  

elseif vp u 
  A = A∪ {v}; 
  for each w in A that is dominated by v  
   A = A-{w}; 

end 

 elseif neither vp u nor up v 

if vp w  for some w in A 
    A = A∪ {v}; 
    for each w in A that is dominated 
     A = A-{w}; 

end 
   endif 

else z = argmin(crowd(u), crowd(v)) 
  A = A-{u}; 
  A = A∪ {z};   
 endif 
 t=t+1; 
end  
 

3.2 Mutation 
Mutation is invoked by applying the Gram-Schmidt 
orthogonalization algorithm to the kernel response matrix, Φ . 
Using this method Φ  can be factored into two matrices, B and A of 
size NQ ×  and NN × , as, 

[ ]Ni bbbbBAΦ ......21== ,                       (8)                         

where the columns of B are mutually orthogonal (i.e. 0=j
T
i bb ). 

Under these circumstances it has been shown in [5] that when the 
weights are optimally chosen based on Equation (6), 

ee
bb
tb

tt T
N

i i
T
i

T
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,                                   (9) 
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where e is a vector of errors. Each term in the summation is the 
contribution of the ith kernel to the target and can be isolated. 
 
The mutation operator acting upon a kernel of size N can either 
reduce its size to N-2, increase it to N+2, or not alter the size, each 
outcome being equally probable. The mutation operator inserts three 
new candidate kernels into the RBF network and applies the OLS 
algorithm to determine the contribution of the N existing kernels, as 
well as the three new ones if each were to be individually added to 
the network. Out of the N+3 candidate kernels, the operator retains 
the N-2, N-1, N, N+1, or N+2 kernels with the highest contribution, 
discarding the remainder. 
 
The kernel widths are computed using the standard nearest neighbor 
heuristic, 

Njiji /||)(||min µµσ −= ,                         (10) 

where min is the minimum operation. The kernel locations are 
subjected to small perturbations from their original locations by 
adding uniformly distributed random vector, 

  ),(rnd εεµµ −+= ii .                        (11) 

In the above equation, rnd(.) generates random vectors whose 
elements lie in the range ),( εε− . The kernel weights are 
determined optimally using (6). 

 

4. RESULTS 
4.1 Experiment Setup 
Testing of the proposed algorithm was implemented in MATLAB 
Release 14. The maximum archive size was set to 20.  The archive is 
initialized with 10 non-dominated networks of with random number 
of kernels, K, and random kernel centers with the widths determined 
by Equation (10).  The number of kernels, K, for each candidate 
solution is limited to the range of 4 to 50 for the duration of the 
experiment. The nearest neighbor heuristic in Equation (10) has a 
uniformly distributed random scaling factor on the interval [1, 10].  
The norm of the perturbation described in Equation (11) for each 
kernel in a solution, iµ , is always less than the kernel’s width, iσ , 

as in [13]. The selection of a solution from the archive for mutation 
is biased towards larger networks because larger networks take more 
time to converge. The algorithm was run for 5000 iterations.   

The data for the experiment is the power system reliability data 
described earlier.  This data was broken up in the same manner as 
Case 4 from  [2] into test and training data sets.  The data sets have 
4 input variables and 1 output.  The training data set has 1775 
samples, and the test data set has 591 samples.  This data is then 
normalized.  The training data is used in the algorithm, and the test 
data is used to verify the generality of the resulting solutions.   

4.2 Results 
The proposed algorithm performs very well on the supplied data.  
Figure 1 shows the Pareto front evolving.  The RBF networks are 
gradually improved.  Small networks converge within only a few 
perturbations while the larger networks may take many steps to 
arrive at a good solution.  Use of the nearest neighbor heuristic 
generally assures that the final solutions will have sufficient 

generality as shown in Figure 2.  The test data actually has lower 
error than the training data.  This unusual finding was also observed 
in [2].  
 

 
Figure 1. Pareto front at select iterations 

 
Figure 2.  Final Pareto front generated by the proposed 

algorithm and the performance of the generated solutions on the 
test data set 

 
Figure 3 shows the convergence of selected network sizes.  These 
plots are more discreet in nature because a network of with a 
selected number of kernels is not always in the archive nor is it 
mutated at each iteration.  Because a network size is not always 
present it is possible for plots like in Figure 3 to not be 
monotonically decreasing when the Pareto front has made only 
minimal improvement and a solution N kernels is removed and then 
later reinserted into the archive.      
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Figure 3.  Error of select networks through time  

 

4.3 Performance Comparison 
The proposed algorithm was compared against other established 
methods in Table 1.  It was compared against the fuzzy inference 
system presented in [2] and against standard multi-layered 
perceptrons (MLPs) with various network sizes.  The results 
reported in Table 1 for the proposed algorithms and MLPs are the 
averaged results over 10 trials. 

The MLPs were trained with standard backpropogation and 
momentum using the standard MATLAB neural network toolbox. 
The best learning rate and momentum for the MLP were found to be 
0.1 and 0.5 respectively, which were significantly better than the 
default values the toolbox provides. The MLP training was halted 
after the error for the test data shows no further improvement. 

 

Table 1.  Average RMS error of proposed algorithm  
 in comparison with other methods.  

 RMSE Training RMSE Test 
Proposed 

Algorithm (N=5) 
0.110 0.093 

Proposed 
Algorithm (N=10) 

0.103 0.085 

Proposed 
Algorithm (N=16) 

0.100 0.081 

FIS 0.142 0.121 
MLP (4x2x1) 0.129 0.123 
MLP (4x3x1) 0.122 0.119 
MLP (4x4x1) 0.118 0.114 

 
The proposed algorithm outperforms both the MLP and the fuzzy 
inference approaches.  The runtime for the proposed algorithm is 
2127 seconds, and for the three MLP models collectively, the 
runtime is 2640 seconds. Larger MLPs showed no significant 
improvement in the performance for the training data, while the 
error for the test data increased. The error reported here is the 

standard RMS error, which is QE , where E is computed using 
Equation (5) and Q is number of training samples.  

5. CONCLUSION 
In this paper a modified version of the PAES algorithm has been 
presented for the optimization of RBF networks used in the 
prediction of overhead distribution failure rates.  The presented 
algorithm is simple and outperforms other methods in the prediction 
of failure rates on overhead distribution feeders. 
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